On Equiconvergence of Fourier Series and Fourier Integral

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of a jump by Fourier and Fourier-Chebyshev series

‎By observing the equivalence of assertions on determining the jump of a‎ ‎function by its differentiated or integrated Fourier series‎, ‎we generalize a‎ ‎previous result of Kvernadze‎, ‎Hagstrom and Shapiro to the whole class of‎ ‎functions of harmonic bounded variation‎. ‎This is achieved without the finiteness assumption on‎ ‎the number of discontinuities‎. ‎Two results on determination of ...

متن کامل

Bernstein Equiconvergence and Fej Er Type Theorems for General Rational Fourier Series Bernstein Equiconvergence and Fej Er Type Theorems for General Rational Fourier Series

Let w() be a positive weight function on the interval ;) and associate the positive deenite inner product on the unit circle of the complex plane by hf; gi w = 1 2 R f(e ii)g(e ii)w()d. For a sequence of points f k g 1 k=1 included in a compact subset of the open unit disk, we consider the orthogonal rational functions (ORF) f k g 1 k=0 that are obtained by orthogonalization of the sequence f1;...

متن کامل

Bilinear Fourier integral operator and its boundedness

We consider the bilinear Fourier integral operatorS(f, g)(x) =ZRdZRdei1(x,)ei2(x,)(x, , ) ˆ f()ˆg()d d,on modulation spaces. Our aim is to indicate this operator is well defined onS(Rd) and shall show the relationship between the bilinear operator and BFIO onmodulation spaces.

متن کامل

Notes on Fourier Series

A function or a real variable f is said to be periodic with period P if f(x+ P ) = f(x) holds for all x. Hence, if we know the values of f on an interval of length P , we know its values everywhere. If f is a function defined on an interval [a, b), we can extend f to a function defined for all x which is periodic of period b− a. We simply define f(x) to be f(x+ n(b− a)), where n is the integer ...

متن کامل

On Walsh-fourier Series^)

Every function f(x) which is of period 1 and Lebesgue integrable on [0, 1 ] may be expanded in a Walsh-Fourier series(3), f(x)~ ?.?=n ak\pk(x), where ak=fof(x)ypk(x)dx, k=0, 1, 2, • • • . Fine exhibited some of the basic similarities and differences between the trigonometric orthonormal system and the Walsh system. He identified the Walsh functions with the full set of characters of the dyadic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2017

ISSN: 1742-6588,1742-6596

DOI: 10.1088/1742-6596/819/1/012025